skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Silverman, Kevin L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A core challenge for superconducting quantum computers is to scale up the number of qubits in each processor without increasing noise or cross-talk. Distributed quantum computing across small qubit arrays, known as chiplets, can address these challenges in a scalable manner. We propose a chiplet architecture over microwave links with potential to exceed monolithic performance on near-term hardware. Our methods of modeling and evaluating the chiplet architecture bridge the physical and network layers in these processors. We find evidence that distributing computation across chiplets may reduce the overall error rates associated with moving data across the device, despite higher error figures for transfers across links. Preliminary analyses suggest that latency is not substantially impacted, and that at least some applications and architectures may avoid bottlenecks around chiplet boundaries. In the long-term, short-range networks may underlie quantum computers just as local area networks underlie classical datacenters and supercomputers today. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026
  2. null (Ed.)